If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+50^2=51^2
We move all terms to the left:
a^2+50^2-(51^2)=0
We add all the numbers together, and all the variables
a^2-101=0
a = 1; b = 0; c = -101;
Δ = b2-4ac
Δ = 02-4·1·(-101)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{101}}{2*1}=\frac{0-2\sqrt{101}}{2} =-\frac{2\sqrt{101}}{2} =-\sqrt{101} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{101}}{2*1}=\frac{0+2\sqrt{101}}{2} =\frac{2\sqrt{101}}{2} =\sqrt{101} $
| 1÷12(4c+57)=1÷4(2c+9) | | 12^2+b^2=18^2 | | y=-2/3*6+1 | | 6x-19=3x-10 | | 7n+3=28 | | n7+3=59 | | a^2+25^2=38^2 | | 7c+6=4.5 | | y=(-2/3)6+1 | | 12x+19x-6+5=-2x+5-6 | | 7m^2-20m-32=0 | | 3y=(5y+1)+1 | | y=(-2)0+3 | | y=(-2)2+3 | | 0.2x-0.6x-23=1 | | 5g+80=87 | | y=(-2)(-3)+3 | | 2^2+6^2=c^2 | | 18+160t-49t^2=0 | | 2x÷5=4÷7 | | y=(-2)5+3 | | 56=63-d | | (3,-4)m=6 | | 1/3(6x-9)=1/2(8x-4) | | 0.08(y-5)+0.06y=0.04y-0.2 | | 1.8+16t-4.9t^2=0 | | (x+25)=3(x+5) | | 9^2+b^2=41^2 | | 63x-35+35=35 | | -0.1+v/2.2=7.4 | | 1.8+16t+-4.9t^2=0 | | 12x+19x-9+5=-9x+5-9 |